

Mark Scheme (Results)

January 2017

Pearson Edexcel International A-Level Mathematics

Decision Mathematics 1 (WDM01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are **in the world. We've been involved in education for over 15**0 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

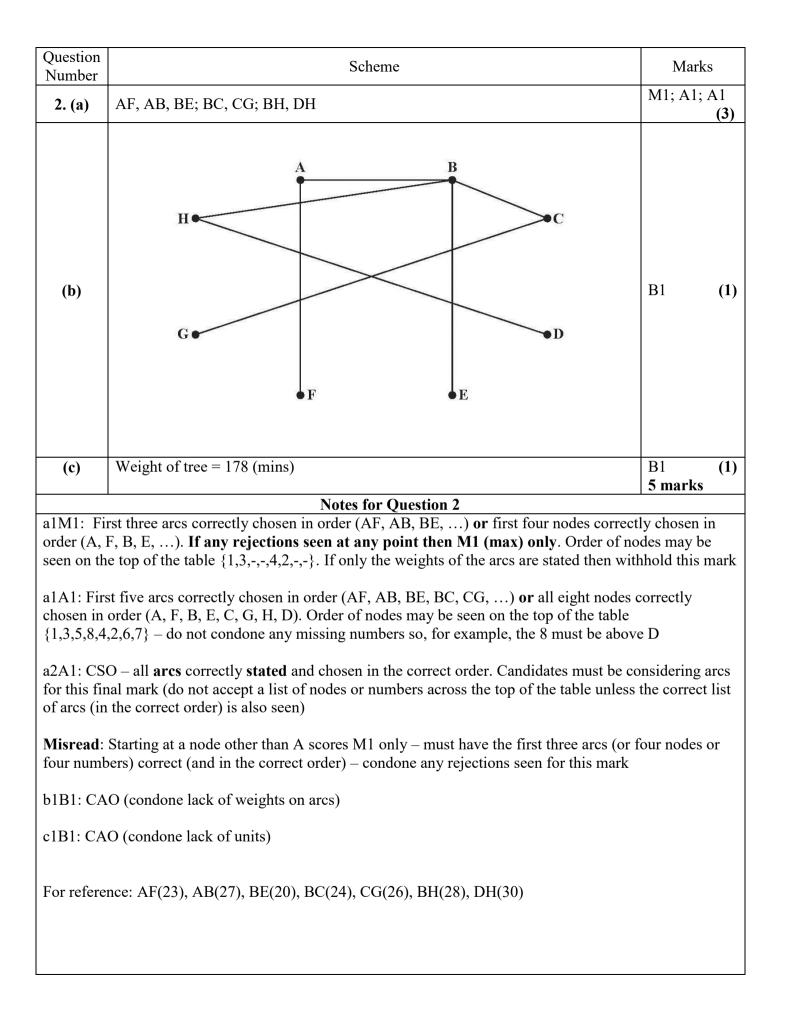
January 2017 Publications Code WDM01_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking


- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
	$\left[\frac{1+10}{2}\right] = 6 \text{Noether} - \text{reject } 6 - 10$	M1
		A1
1.	$\left[\frac{1+5}{2}\right] = 3 \text{ Gauss} - \text{reject } 1 - 3$	
1.	$\left[\frac{4+5}{2}\right] = 5$ Lagrange – reject 5	A1
	$\begin{bmatrix} 4 \end{bmatrix} = 4$ Hamilton (reject 4)	
	Hilbert <u>not</u> in list	Alcso (4)
		4 marks
1 1 1 . C1 .	Notes for Question 1	
the list	osing middle right pivots (choosing middle left is M0) + an attempt at discarding/r	etaining half
second pa 2A1: Seco the 5 th iter 3A1: CSC	pass correct i.e. 6 th item and using 1 – 5 in the second pass (must not be using the ss) and and third passes correct i.e. 3 rd (G) and 5 th (L) items (no sticky pivots) – need n n for this mark a search complete (so rejecting 5 th and 4 th items (which in the case of the 4 th item m nd' – must be a clear distinction between Hamilton and Hilbert	ot be rejecting

Question Number	Scheme	Marks	8
3. (a)	Alternating path: $A - 6 = D - 2 = C - 5 = F - 4$	M1	
	Change status: $A = 6 - D = 2 - C = 5 - F = 4$	A1	
	Improved matching: $A = 6$, $B = 1$, $C = 5$, $D = 2$, (E unmatched), $F = 4$	A1	(3)
(b)	e.g. A is only allocated to task 6 (so A must do task 6), so D must therefore be matched to task 2 (as D can only be allocated to tasks 2 and 6) which leaves E without a match (as E can only be allocated to task 2) – so there are three workers that can only do two tasks	B1	(1)
(c)	Alternating path: $E - 2 = D - 6 = A - 1 = B - 3$ or $E - 2 = D - 6 = A - 1 = B - 5 = C - 3$	M1	
	Change status: $E = 2 - D = 6 - A = 1 - B = 3$ or $E = 2 - D = 6 - A = 1 - B = 5 - C = 3$	A1	
	Complete matching: $A = 1$, $B = 3$, $C = 5$, $D = 6$, $E = 2$, $F = 4$ or $A = 1$, $B = 5$, $C = 3$, $D = 6$, $E = 2$, $F = 4$	A1	(3)
		7 marks	

Notes for Question 3

a1M1: An alternating path from A to 4 (or vice-versa)

a1A1: CAO – a correct path including change status **either** stated **or** shown. Chosen path clear a2A1: CAO (improved matching) must follow from the correct stated path. Accept on a clear diagram (with five arcs only)

b1B1: for this mark tasks/workers must be referred to explicitly by number/letter – the two most common arguments are those that state that there are three workers (A, D and E) that can **only** do two tasks (2 and 6) or there are four tasks (1, 3, 4 and 5) that can **only** be done by three workers (B, C and F). For example,

- A can only do 6, D can only do 2 and 6, and E can only do 2 B1
- A, D and E between them can only do 2 and 6 B1
- 1, 3, 4 and 5 can only be done by B, C and F B1
- 2 and 6 can only be done by A, D and E B0
- B, C and F can only do 1, 3, 4 and 5 B0
- There are three workers that can only do two tasks B0
- A can only do 6, E can only do 2 therefore D has no task to do B0
- A must do 6, E must do 2 so therefore D has no task to do as D can only do 6 and 2 bod B1

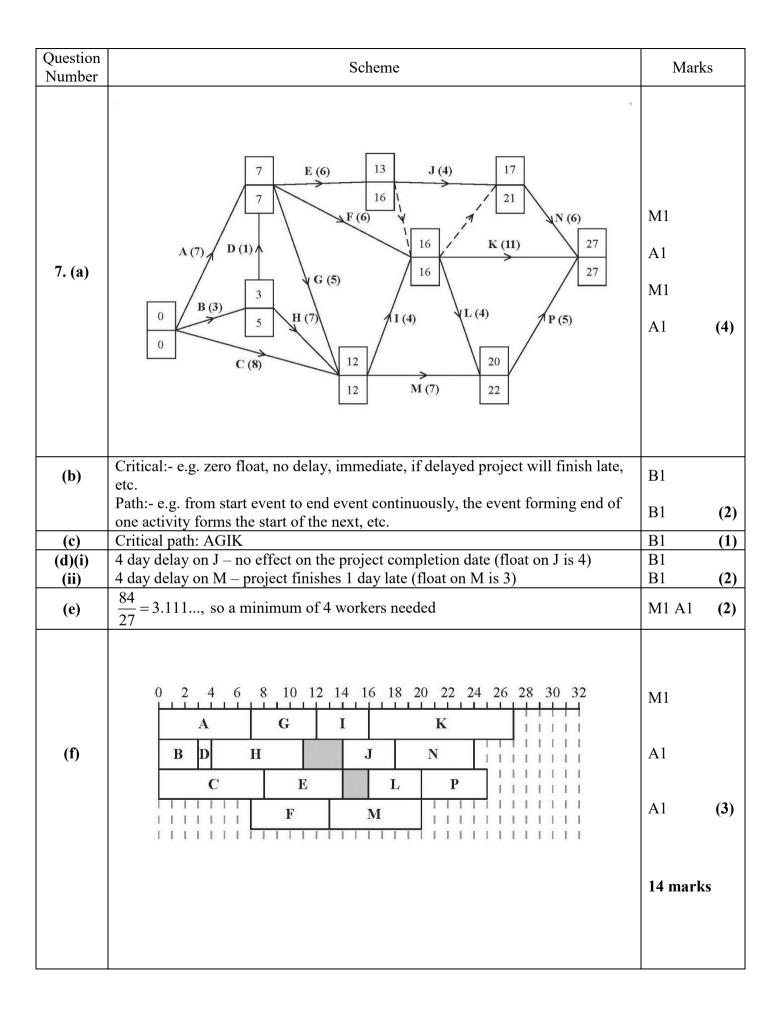
c1M1: An alternating path from E to 3 (or vice-versa)

c1A1: CAO – a correct path including change status stated **or** shown. Chosen path clear

c2A1: CAO (complete matching) must follow from two correct stated paths (so both previous M marks must have been awarded). Accept on a clear diagram (with six arcs only)

Misread: Alternating path from A to 3 in (a) – mark both parts (a) and (c) as a misread (so remove the final two A marks if earned – so can score a maximum of M1A1A1 in (a) and M1A0A0 in (c))

In (a) Alternating path is A - 6 = D - 2 = C - 3 leading to A = 6, B = 1, C = 3, D = 2, (E unmatched), F = 5In (c) (i) E - 2 = D - 6 = A - 1 = B - 5 = F - 4 or (ii) E - 2 = D - 6 = A - 1 = B - 3 = C - 5 = F - 4leading to to (i) A = 1, B = 5, C = 3, D = 6, E = 2, F = 4 or (ii) A = 1, B = 3, C = 5, D = 6, E = 2, F = 4


If alternating path in (a) starts from E then send to review

Question Number	Scheme								Marl	ks	
4. (a)	$\frac{178}{45} = 3.95$ so lower bound is 4 bins								M1 A1	(2)	
(b)	Bin 1: 23 18 Bin 2: 27 9 Bin 3: 25 10 Bin 4: 12 30 Bin 5: 24 30							<u>M1</u> A1	(2)		
(c)	e.g. (left to right) $ \begin{array}{c cccccccccccccccccccccccc$							M1 A1 A1ft A1cso	(4)		
	List in order										
(d) (e)	Bin 1: 30 12 Bin 2: 27 18 Bin 3: 25 10 9 Bin 4: 24 10 9 Bin 5: 23 10 9 e.g. 5 of the suitcases are over 22.5 (half the weight of a container). No two of							two of	M1 A1 B1	(2)	
(0)	these five	e can be p	aired in a	a bin, so	at least 5	bins will	l be requi	red.		11 marl	
a1M1· At	tempt to fi	nd the lov	ver boun		es for Qu			3 96 seer	with no	working ca	n
imply this	mark) O – correc r of 4 with rst six item	et calculat no worki is placed o	ion seen ing score	or 3.95 o s M0A0	or 3.96 fo	llowed b	y 4 – acc	ept 3.9 if		alculation	

Question Number					Schen	ne				Marks
	ubble sor	t. Consis	tent direc	tion thro	ughout so	ort, end n	umber (g	reatest/le	east) in place	and first pass
correct					0	,	(c	,	/ I	1
c1A1: Se	cond and	l third pa	sses corre	ect – so e	nd three 1	numbers	in place			
c2A1ft: F numbers		d fifth pa	isses corr	ect follov	ving thro	ugh from	the cand	idate's tl	nird pass – so	end five
c3A1: C final list			• /	– includi	ng either	a 'sort co	omplete'	statemen	t (after the se	eventh pass) or
Sorting li	st into as	scending	order in (c)						
• If the li	st is not i	reversed	then marl	c as a mis	sread (so	remove t	he last tv	vo A mar	•	core full mark f the candidate inal A mark
d1M1: M totals for		-	ed' list in	descend	ing order	. First six	t items pl	aced cor	rectly. Condo	one cumulativ
d1A1: CS	SO – all o	correct								
	their firs	t six iten	ns correct	ly placed	-by 'ind	correct' t				vard M1 only g. one missing
					-					tcases weigh r than > 22.5)
right to le	eft in (c)									
23	18	27	9	25	10	12	30	24]	
30	23	18	27	9	25	10	12	24	1	
30	27	23	18	25	9	24	10	12]	
30	27	25	23	18	24	9	12	10		
30	27	25	24	23	18	12	9	10		
30	27	25	24	23	18	12	10	9	J	
			L	ist in ord	er					

Question Number	Scheme	Marks
5. (a)	A(FG)C + E(FI)J = 14.5 + 9.2 = 23.7	M1 A1
	A(F)E + C(GFI)J = 10.2 + 13.5 = 23.7	A1
	A(FI)J + E(FG)C = 9.6 + 14.1 = 23.7	A1
	So repeat tracks AF, EF, CG, FG, FI and IJ	A1 (5)
(b)	Any route e.g. AFAEFEHIFIKJIJGFGCGDCBA	B1
	Length = $106.7 + 23.7 = 130.4$ (km)	DB1ft (2)
(c)	The new track would make A and C even	
	So only EJ would need to be repeated	B1
	Extra distance would be $15 + 9.2 = 24.2 > 23.7$	
	So it would increase the total distance (by 0.5 (km))	B1 (2) 9 marks
	Notes for Question 5	
a1M1: Th	ree distinct pairings of the correct four odd nodes	
alAl: An	y one row correct including pairing and total	
a2A1: An	y two rows correct including pairings and totals	
a3A1: All	three rows correct including pairings and totals	
a4A1: Cor	rect arcs explicitly identified and not just stated in their working. Accept e.	g. AFGC but not AC
	y correct route – checks: starts and finishes at A, 23 vertices, repeats AF, El A appears 3, B(1), C(2), D(1), E(2), F(4), G(3), H(1), I(3), J(2), K(1)	F, CG, FG, FI and IJ
b2B1ft: 13	30.4 or $106.7 + $ ft their least from (a) – this mark is dependent on at least tw	o totals seen in (a)
c1B1: Exp	olicit mention of EJ or EFIJ (not just 9.2) – if any other pairing mentioned the	hen B0
or 14.5 sta	2 + 'increase' provided 23.7 found as least in (a) or 130.9 + 'increase' provated as the length of AC + increase or 14.5 compared with 15 + 'increase'. To the previous B mark – so B0B1 can be awarded	
SC for (c)	: If B0B0 awarded but 'increase of 0.5' stated then award B1B0	

Question Number	Scheme	Marks				
6. (a)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A1 (ABDE) A1 (CG) A1ft (FH)				
(b)	Shortest path from A to H via D: ABDHlength: 37Shortest path from A to H via G: ABECGHlength: $21 + x$ Shortest path from A to H via E: ABEHlength: $13 + 2x$ $21 + x + 2 = 13 + 2x$ $x = 10$	A1 A1 A1 (7) M1 A1 (2)				
	Notes for Question 6	9 marks				
e.g. at F t labelling in notes belo before err a1M1: A l G a1A1: All of labellin a2A1: All only once a3A1ft: A Penalise o a4A1: AB a5A1: AB	In (a) the order of the working values must be correct for the corresponding A mark to be awarded e.g. at F the working values must be 30 29 27 in that order (30 27 29 is incorrect). The order of labelling must also be a strictly increasing sequence – so 1, 2, 3, 3, 4, will be penalised once (see notes below) but 1, 2, 3, 5, 6, is fine. Errors in the final values and working values are penalised before errors in the order of labelling a1M1: A larger value replaced by a smaller value at least once in the working values at either C or D or F or					
expression	eir final value from G (their 21) + x + 2 = their final value from E (their 13) + ns must be linear in x AO – if no working seen but x = 10 stated together with the correct two working d M1A0					

Question Number			Marks						
INUITIOCI		Notes for	Question 7						
condone of a1A1: CA	ne 'rogue' value – con O (top boxes)	values generally increated one a missing 0 in the	asing in the dire		_ /				
('right to l	a2M1: All bottom boxes complete, values generally decreasing in the opposite direction of the arrows ('right to left'), condone one 'rogue' value – condone a missing 0 in the first box for the M mark only a2A1: CAO (bottom boxes)								
	b1B1: CAO for defining 'critical' part b2B1: CAO for defining 'path' part								
c1B1: CA	O (AGIK)								
	O – as a minimum acc O – as a minimum acc	1		7 + 1' e.g. at time 28 bu	t not just '28'				
activities /	their finish time) or as	s a minimum accept a	wrt 3.1	/ their finish time) or (s answer of 4 with no wo					
f1A1: 4 we to at most	a cascade chart. 4 'wo orkers. All 15 activitie three errors; one on du orkers. All 15 activitie	s present (just once). aration, one on time ir	Condone at most terval and only	st two errors. An activity	y can give rise				
				7					
Activi		Time interval	IPA	-					
A	7	0-7 0-5	-	-					
B C	8	0-3 0-12	-	-					
D	0	3-7	B	-					
E E	6	7-16	A, D						
F	6	7-16	A, D	-					
G	5	7-12	A, D						
H	7	3 - 12	B	1					
I	4	12 - 16	C, G, H	-					
J	4	12 - 10 13 - 21	<u> </u>	-					
K	11	16 - 27	E, F, I	-					
L	4	16 - 22	E, F, I	1					
M	7	10 22 12 - 22	C, G, H	1					
N	6	17 - 27	F, I, J	1					
P	5	20 - 27	L, M	1					
				-					

Question Number	Scheme	Marks
8. (a)	Minimise $(P=)2x+3y+5z$ Subject to:	B1
	$\begin{array}{l} x + y + z \ge 50 \\ y \ge 2z \end{array}$	B1 B1
	$\frac{3}{5}(x+y+z) \ge x$ simplifies to $2x \le 3y+3z$	M1 A1
	$\frac{1}{3}(x+y+z) \le y \text{ simplifies to } 2y \ge x+z$	M1 A1
	$(x, y, z \ge 0)$	(7)
(b)	y = 20	B1 B1 B1 B1 (4)
(c)	Drawing an objective line accept reciprocal gradient Correct objective line minimum length equivalent to (0, 5) to (7.5, 0) V labelled correctly	M1 A1 A1 (3)
(d)	20 ballpoint pens, 20 rollerball pens (and 10 fountain pens) Cost: (£) 150	DB1 DB1 (2) 16 marks

Question Number	Scheme	Marks
INUITION	Notes for Question 8	
a1B1: CA	O – expression correct and 'minimise'	
	$O(x+y+z \ge 50)$	
	$O(y \ge 2z)$	
a1M1: Cor	rrect method - must see $\frac{3}{5}(x+y+z) \bullet x$ where \bullet is any inequality or =. The bracke	t must be
present or	implied by later working	
	O – simplified – answer must have integer coefficients $(2x \le 3y + 3z)$ - the correct is	nequality with
	g implies M1A1	
a2M1: Cor	rrect method – must see $\frac{1}{3}(x+y+z) \bullet y$ where \bullet is any inequality or =. The bracket	t must be
present or	implied by later working	
a2A2: CA	O – simplified – answer must have integer coefficients $(2y \ge x+z)$ - the correct ine	quality with
no workin	g implies M1A1	
the points	s must be long enough to define the correct feasible region and pass through one sm stated in either the horizontal or vertical direction, e.g. for (90, 50) the line must pase interval [88, 92] for x or [49, 51] for y :	1
• <i>x</i> -	y = 40 from (0, 40) to (40, 0)	
	x-3y = 30 from (30, 10) to (97.5, 55)	
	x+2y = 10 from (0, 5) to (90, 50)	
	= 20 from (0, 20) to (90, 20)	
y -		
b2B1: Any b3B1: All	y two lines correctly drawn y three lines correctly drawn four lines correctly drawn gion, R, correctly labelled – not just implied by shading – dependent on scoring the his part	first three
if extended length equ c1A1: Cor extended f c2A1: V la mark in (c	awing the correct objective line or its reciprocal. Line must be correct to within one d from axis to axis in either the horizontal or vertical direction. If their line is shorte ivalent to that of the line from (0, 5) to (7.5, 0) then M0 rect objective line – same condition that the line must be correct to within one smal from axis to axis in either the horizontal or vertical direction abelled clearly on their graph. This mark is dependent on all four marks in (b) and th). By clearly labelled the vertex should either be labelled 'V' or circled or clearly di other vertex (but A0 if not clear e.g. another vertex circled too)	r than the l 'square' if ne previous A

d1B1: CAO dependent on full marks in (b) and at least M1A1 in (c) – condone no mention of fountain pens – answer must be in context

d2B1: CAO dependent on full marks in (b) and at least M1A1 in (c) - condone lack of units